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In the classical view, NMDA receptors (NMDARs) are stably expressed at the postsynaptic membrane, where they act via Ca 2� to signal
coincidence detection in Hebbian plasticity. More recently, it has been established that NMDAR-mediated transmission can be dynam-
ically regulated by neural activity. In addition, NMDARs have been found presynaptically, where they cannot act as conventional coin-
cidence detectors. Unexpectedly, NMDARs have also been shown to signal metabotropically, without the need for Ca 2�. This review
highlights novel findings concerning these unconventional modes of NMDAR action.
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Introduction
The N-methyl-D-aspartate (NMDA) receptor (NMDAR), a mem-
ber of the glutamate-gated cation channel family, is ubiquitously
expressed in the brain (Moriyoshi et al., 1991), where it plays numer-
ous roles, most notably in neurodevelopment, synaptic transmission
and plasticity, and learning and memory (Traynelis et al., 2010;
Paoletti et al., 2013; Iacobucci and Popescu, 2017). NMDARs consist
of a tetrameric subunit structure, conventionally comprised of two
GluN1 and two GluN2 subunits that confer Ca2� permeability and
Mg2� sensitivity (Traynelis et al., 2010; Paoletti et al., 2013; Iaco-
bucci and Popescu, 2017). However, NMDARs can also include
other subunits and alternative splice variants, which greatly affect
receptor kinetics, trafficking, and signaling properties. For exam-
ple, GluN3 is typically expressed early in development and con-
fers unconventional properties, such as Mg 2� insensitivity and
low Ca 2� conductance, with important implications for synapse
maturation and plasticity (Pérez-Otaño et al., 2016). Until re-
cently, NMDAR functions have generally been attributed to their
ability to conduct Ca 2� ions at the postsynapse, where their sta-
bility and function were thought to be unperturbed by neural
activity.

Here, we start by discussing several independent studies dem-
onstrating that NMDAR-mediated transmission can be modified
in an activity-dependent manner (Lau and Zukin, 2007; Rebola et
al., 2011; Hunt and Castillo, 2012). Next, we describe how pre-
synaptic NMDARs (preNMDAR), which have been found at sev-
eral synapse types in the brain (Duguid and Sjöström, 2006;
Banerjee et al., 2016), signal differentially to control evoked and
spontaneous release independently. Finally, we highlight emerg-
ing evidence that NMDARs can signal independent of ion flow,
focusing on recent findings demonstrating that glutamate bind-
ing to the NMDAR is sufficient to induce LTD of synaptic trans-
mission (Nabavi et al., 2013) and shrinkage of dendritic spines
(Stein et al., 2015), likely through conformational change in the
NMDAR intracellular domain (Aow et al., 2015; Dore et al., 2015).
We end with a discussion of potential roles of unconventional
NMDAR signaling in synaptic diseases, such as Alzheimer’s dis-
ease, ischemia, and schizophrenia (Lau and Zukin, 2007; Paoletti
et al., 2013), highlighting evidence that metabotropic NMDAR
signaling may contribute to Alzheimer’s disease (Kessels et al.,
2013; Tamburri et al., 2013; Birnbaum et al., 2015). Even though
NMDARs feature prominently in textbooks on cellular learning
and information storage in the brain, these novel unconventional
modes of NMDAR signaling are still hotly debated. The complete
elucidation of the many different modes of NMDAR signaling is
therefore of utmost importance for understanding and treating
these diseases.

Activity-dependent synaptic plasticity of NMDARs
NMDARs are traditionally thought to act postsynaptically as
coincidence detectors of presynaptic glutamate release and post-
synaptic depolarization for the induction of LTP and LTD of
AMPAR-mediated transmission, during which NMDAR-mediated
transmission was thought to remain stable (Lüscher and Malenka,
2012). Postsynaptic NMDARs also have well-established roles in
synaptic transmission (Daw et al., 1993) and neuronal integra-
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tion (Larkum and Nevian, 2008; Major et al., 2013) via their slow
kinetics, Mg 2�-dependent nonlinear amplification at resting po-
tential, and high Ca 2� permeability (McBain and Mayer, 1994;
Traynelis et al., 2010; Iacobucci and Popescu, 2017). Growing
evidence, however, demonstrates that postsynaptic NMDARs them-
selves can be regulated in an activity-dependent manner; indeed, both
LTP and LTD of NMDAR-mediated transmission have been re-
ported throughout the brain (Lau and Zukin, 2007; Rebola et al.,
2011; Hunt and Castillo, 2012). Furthermore, pioneering studies
have revealed that GluN2 subunit trafficking is influenced by
NMDAR agonists (Vissel et al., 2001; Barria and Malinow, 2002)
and coagonists (Nong et al., 2003; Ferreira et al., 2017). Changes
in NMDAR function or expression would modify the induction
threshold of AMPAR-mediated plasticity, thereby mediating
metaplasticity (Abraham, 2008), and also would alter NMDAR-
mediated functions in homeostatic plasticity (Pérez-Otaño and
Ehlers, 2005). Thus, NMDAR plasticity is expected to play important
roles in normal brain function.

Synaptic plasticity of NMDARs has been reported by several
groups using diverse stimulation paradigms in several different
brain areas. NMDAR-LTP can be coinduced with AMPAR plas-
ticity, and develops more slowly both in neocortex (Watt et al.,
2004) and hippocampus (Muller and Lynch, 1988; Xiao et al.,
1995; Peng et al., 2010). Similarly, AMPAR and NMDAR LTD
can coinduce at a number of synapses (Hunt and Castillo, 2012).
Remarkably, NMDAR plasticity can also occur independently of
AMPAR plasticity. For example, brief bursts of synaptic activity
elicit NMDAR-LTP at the mossy fiber to CA3 pyramidal cell
synapse (Hunt et al., 2013). Some synapses can also undergo
bidirectional NMDAR plasticity, for example, mossy fiber syn-
apses (Hunt et al., 2013) and glutamatergic synapses onto mid-
brain dopaminergic neurons (Harnett et al., 2009).

Mechanistically, the induction and expression of NMDAR
plasticity share common properties across synapses (Hunt and
Castillo, 2012). For example, induction typically requires coacti-
vation of NMDARs and mGluR1/5 (Kotecha et al., 2003; Lau and
Zukin, 2007). Whereas mGluR5 is essential for NMDAR-LTP,
mGluR1 is essential for NMDAR-LTD (Hunt et al., 2013; Bhouri
et al., 2014). Chemical NMDAR-LTD can be induced by exoge-
nous activation of mGluR1/5 (Ireland and Abraham, 2009) and
other Gq-coupled receptors, such as mAChRs (Jo et al., 2010), and
orexin-2 receptors (Perin et al., 2014). Induction of NMDAR-LTP
and LTD also requires postsynaptic NMDAR-mediated Ca 2� in-
flux and Ca 2� release from internal stores. The sign of NMDAR
plasticity appears to depend on the free Ca 2� concentration dur-
ing the induction (Harney et al., 2006). While PKC, PKA, and Src
kinases are involved in NMDAR-LTP induction, the Ca 2� targets
that mediate NMDAR-LTD are less clear. Protein phosphatase-1
(PP1)/protein phosphatase-2A (PP2A) are required for NMDAR-
LTD (Morishita et al., 2005), whereas the Ca 2� sensor hippocal-
cin has been implicated in mAChR-mediated LTD (Jo et al.,
2010). Expression of NMDAR-LTP relies on increased synaptic
NMDAR surface expression (Grosshans et al., 2002; Kwon and
Castillo, 2008) and synaptic recruitment of extrasynaptic NMDARs
(Harney et al., 2008). NMDAR-LTD may involve dynamin-
dependent endocytosis of NMDARs (Montgomery and Madison,
2002; Montgomery et al., 2005; Jo et al., 2010; Hunt et al., 2013) as
well as Ca 2�-dependent actin depolymerization, which likely
promotes cytoskeletal destabilization and lateral NMDARs diffu-
sion to extrasynaptic sites (Morishita et al., 2005; Ireland and
Abraham, 2009; Peng et al., 2010). Last, in addition to strength-
ening or weakening of NMDAR transmission, NMDAR plasticity
may involve changes in receptor properties as a result of an

activity-dependent shift in receptor subunit composition (Bel-
lone and Nicoll, 2007; Harney et al., 2008; Peng et al., 2010; Matta
et al., 2011).

The functional consequences of NMDAR plasticity are pro-
found and may include not only metaplasticity but also changes
in neuronal integrative properties. At hippocampal mossy fibers,
where NMDAR-LTP can occur in the absence of AMPAR-LTP
(Kwon and Castillo, 2008; Rebola et al., 2008), NMDAR-LTP is a
prerequisite for induction of NMDAR-dependent AMPAR-LTP
(Rebola et al., 2011). Bidirectional NMDAR plasticity contributes
to fidelity of mossy fiber-driven CA3 pyramidal cell spiking, and
also modulates LTP at neighboring synapses (Hunt et al., 2013).
These forms of plasticity may thus determine memory encoding
and retrieval by the dentate-CA3 circuit (Rebola et al., 2017). In
hippocampal cultures, prolonged suppression of spontaneous
glutamate release upregulates AMPARs via postsynaptic store-
driven Ca2� signaling (Reese and Kavalali, 2015) but also NMDARs,
thereby augmenting spine Ca 2� to facilitate AMPAR-LTP induc-
tion (Lee et al., 2010), indicating that NMDAR plasticity can act
homeostatically over longer timescales. In addition to acting as
triggers of AMPAR-LTP/LTD, NMDARs also mediate inhibitory
synaptic plasticity (Castillo et al., 2011). NMDAR plasticity could
therefore modulate neural circuits via inhibition. Although
NMDAR plasticity has been extensively studied in vitro, a future
challenge is to determine the precise contribution of this form of
plasticity in vivo.

PreNMDAR-mediated regulation of neurotransmitter release
In the canonical view, NMDARs induce Hebbian LTP by fluxing
Ca 2� when simultaneously glutamate bound and depolarized,
and also contribute to dendritic integration (Maheux et al., 2015),
which requires NMDARs be located postsynaptically (Duguid
and Sjöström, 2006). Yet, presynaptically located NMDARs
(preNMDARs) have been reported for decades: cortex (Berretta
and Jones, 1996; Sjöström et al., 2003), spinal cord (Liu et al.,
1994), hippocampus (Siegel et al., 1994; McGuinness et al., 2010),
and cerebellum (Casado et al., 2000; Bidoret et al., 2009). Curi-
ously, these Mg 2�-sensitive preNMDARs are opened by gluta-
mate and depolarization of presynaptic origin (but see Larsen et
al., 2011), which means they cannot act in classical Hebbian plas-
ticity, suggesting that these mysterious receptors play other roles
(Duguid and Sjöström, 2006; Banerjee et al., 2016). For example,
preNMDARs have been shown to modulate neurotransmitter re-
lease, affecting spontaneous (Berretta and Jones, 1996; Sjöström et
al., 2003; Kunz et al., 2013) as well as evoked release, both short- and
long-term (Sjöström et al., 2003; Duguid and Smart, 2004; Bidoret et
al., 2009; McGuinness et al., 2010; Buchanan et al., 2012).

Adding further to the mystery, Mg 2�-blocked preNMDARs
should only be activated at sufficiently high presynaptic frequen-
cies, yet this is not always the case. These presumed autoreceptors
should require high presynaptic firing rates to activate because by
the time they are glutamate bound, the presynaptic spike should
be gone, thus requiring depolarization from the next spike (Dug-
uid and Sjöström, 2006; Banerjee et al., 2016). In agreement,
several studies have found frequency dependencies (Sjöström et
al., 2003; Bidoret et al., 2009; McGuinness et al., 2010). However,
preNMDARs also regulate spontaneous release, which generally
occurs at very low frequencies, resulting in a long-standing co-
nundrum in the field (Sjöström et al., 2003; Brasier and Feldman,
2008; Banerjee et al., 2016). Some resolution was provided by the
discovery that GluN3A-containing preNMDAR types are insen-
sitive to Mg 2� (Larsen et al., 2011; but see Pérez-Otaño et al.,
2016), and that preNMDAR control of spontaneous release is
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not Ca 2�-sensitive (Kunz et al., 2013)
(Fig. 1), suggesting a dichotomy in
preNMDAR regulation of evoked and
spontaneous release. Indeed, differen-
tial regulation of spontaneous and
evoked release is likely a general princi-
ple in the brain (Kavalali, 2015).

To help resolve this conundrum
(Sjöström et al., 2003; Brasier and Feld-
man, 2008; Banerjee et al., 2016), the P.J.S.
laboratory explored how preNMDARs
signal to regulate evoked and spontaneous
release in visual cortex layer 5 pyramidal
cells. They found that preNMDAR regu-
lation of evoked release was sensitive to
Mg 2� and presynaptic firing frequency,
whereas preNMDAR control of spontane-
ous release was Mg 2� independent (Abra-
hamsson et al., 2017), suggesting that
preNMDARs might signal metabotropi-
cally (Nabavi et al., 2013; see below) to
control spontaneous release (Abraham-
sson et al., 2017). Consistent with differ-
ential preNMDAR signaling in evoked
versus spontaneous release, preNMDAR
regulation of evoked neurotransmission
maintained release probability during high-
frequency firing by increasing the replen-
ishment rate of the readily releasable pool,
instead of directly affecting release probabil-
ity, as might be expected from the regu-
lation of spontaneous release (Fig. 1)
(Abrahamsson et al., 2017).

Moreover, two proteins, Rab3-interacting
molecule 1 (RIM1) (Südhof, 2012) and
c-Jun-N-terminal kinase 2 (JNK2) (Nis-
ticò et al., 2015), were differentially re-
quired for preNMDAR control of evoked
and spontaneous neurotransmission, re-
spectively, in a nonoverlapping manner
(Fig. 1) (Abrahamsson et al., 2017). Con-
ditional RIM1�� deletion thus abolished
preNMDAR control of evoked release with-
out impacting that of spontaneous release
(Fig. 1). Conversely, pharmacological JNK2
blockade abolished preNMDAR control of
spontaneous release (as previously shown in
entorhinal cortex) (Nisticò et al., 2015)
without having an effect on preNMDAR
regulation of evoked release (Fig. 1). These
findings thus revealed a double dissociation in preNMDAR signal-
ing (Fig. 1), providing resolution to the conundrum of how preN-
MDARs may control evoked release at high frequencies while still
affecting spontaneous release at low rates (Sjöström et al., 2003; Brasier
and Feldman, 2008; Banerjee et al., 2016).

In summary, preNMDARs may control spontaneous re-
lease independently of Mg 2� and Ca 2� (Kunz et al., 2013;
Abrahamsson et al., 2017) while regulating evoked release in a
frequency-dependent manner by relying on the more conven-
tional Mg 2�-dependent pathway (Fig. 1). These findings pro-
vide a foundation for further exploration of preNMDAR
signaling (Abrahamsson et al., 2017), which is presently
poorly understood.

Metabotropic NMDAR signaling in LTD
The complex pharmacology of NMDARs suggests that their
function can be regulated in many different ways. Classically, it
was thought that the presence of several binding sites provided
the coincidence detection properties of NMDARs (ion-flux is
only permitted when neurotransmitters are bound and the cell is
depolarized to remove the Mg 2� block). However, several studies
have revealed that binding of NMDAR agonists (Vissel et al.,
2001; Barria and Malinow, 2002) or coagonists (Nong et al., 2003;
Ferreira et al., 2017) can affect trafficking of GluN2 subunits
without ion-flux. Furthermore, growing evidence supports the
view that glutamate binding alone can induce LTD of AMPAR-
mediated transmission, suggesting that the NMDAR has a
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Figure 1. Recent discoveries of novel unconventional NMDAR signaling modes indicate that our view of this receptor type may
need to be expanded. Mg 2�-blocked presynaptic NMDARs (preNMDAR) rely on RIM1 to control, in a frequency-dependent
manner, the replenishment rate of the readily releasable pool of vesicles. Control of spontaneous release by preNMDARs, however,
is not sensitive to Mg 2� or Ca 2� and relies on JNK2. Postsynaptic NMDARs can act as coincidence detectors for Hebbian plasticity
of AMPARs, but plasticity of NMDARs can also be coinduced and likely plays important roles. Moreover, several studies suggest that,
if ion flux is blocked through postsynaptic NMDARs, they can still signal metabotropically. Upon glutamate binding, movement in
the NMDAR cytoplasmic domain may permit PP1 catalytic access to phospho-CaMKII-T286 and, in parallel, activation of p38 MAPK.
These (and other) signaling molecules can eventually lead to LTD: AMPAR removal and spine shrinkage. Furthermore, elevated
amyloid-� can depress synaptic transmission and cause spine elimination in a manner that is dependent on glutamate binding to,
but not ion flux through, NMDARs. All signaling modes need not coexist at the same synapse type.
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metabotropic function, distinct from its ion channel role. Inter-
estingly, early reports of non-ionotropic NMDAR signaling came
�20 years ago, when two different groups showed that MK-801,
which blocks the NMDAR channel pore, abolished LTP but not
LTD (Mayford et al., 1995; Scanziani et al., 1996). These surpris-
ing observations were not discussed in either study, probably
because a model suggesting that LTD required moderate in-
creases in intracellular Ca 2� was already proposed (Bröcher et al.,
1992; Malenka, 1994).

A few years ago, this model was challenged by a study where
the ion-flux dependence of LTD was examined more closely
(Nabavi et al., 2013). Low-frequency stimulation produced LTD
in the presence of either MK-801 or 7-chlorokynurenate (7-CK),
two antagonists abolishing NMDAR ion flux without affecting
the glutamate binding site, but not APV, which is a competitive
GluN2 antagonist blocking the glutamate binding site. This sur-
prising finding was subsequently challenged by some recent stud-
ies (Babiec et al., 2014; Volianskis et al., 2015; Sanderson et al.,
2016) but confirmed by others (Kim et al., 2015; Stein et al.,
2015). It was proposed that these discrepancies were due to dif-
ferences in methodology (Nabavi et al., 2014). Moreover, LTD
was observed in experiments in which intracellular Ca 2� was
clamped to basal levels (Nabavi et al., 2013), in contrast to those
earlier studies in which intracellular Ca 2� was completely de-
pleted (Bröcher et al., 1992), suggesting that a rise in intracellular
Ca 2� is not required for LTD. It was thus proposed that gluta-
mate binding to the NMDAR could induce a conformational
change in the cytoplasmic domain of the NMDAR that triggers
downstream signaling resulting in LTD.

To explore the metabotropic function of NMDARs in LTD,
FRET-FLIM (Förster resonance energy transfer measured by flu-
orescence lifetime imaging of the FRET donor) (Wallrabe and
Periasamy, 2005; Yasuda, 2006) was used (Dore et al., 2015).
Recombinant GluN1 subunits of NMDARs were tagged with
GFP or mCherry at their carboxyl(c)-terminus and coexpressed
in neurons. A transient change in FRET consistent with confor-
mational movement of the NMDAR cytoplasmic domain was
measured during NMDA bath application or glutamate uncaging
in the presence of MK801 and 7CK, but not APV (Dore et al.,
2015; independently replicated by Ferreira et al., 2017) (Fig. 1).
Infusing neurons with a GluN1 c terminus antibody through a
patch pipette blocked changes in FRET and LTD. Together, these
findings suggest that conformational changes in the NMDAR,
without its ionotropic function, are necessary for LTD induction
(Aow et al., 2015).

PP1 may signal downstream of NMDARs as it was shown to be
necessary for LTD induction (Mulkey et al., 1993) and coimmu-
noprecipitated with NMDAR complexes (Husi et al., 2000). LTD
induction transiently reduced FRET between GluN1-GFP and
PP1-mCherry in a manner that required NMDAR conforma-
tional movement but not PP1 activity (Aow et al., 2015). The
transient movement of PP1 relative to the NMDAR cytoplasmic
domain may expose the catalytic active site of PP1 to an otherwise
unreachable target. CaMKII, one potential target, is required for
both LTP and LTD. Changes in FRET between CaMKII and
GluN1 was observed in ion-flux independent LTD in a PP1-
dependent fashion; a phosphomimetic form of CaMKII sug-
gested that dephosphorylation of the Thr-286 residue was
required to modify the CaMKII-NMDAR interaction (Fig. 1;
Aow et al., 2015). These findings provide evidence for NMDAR-
mediated ion-flux-independent LTD that is mediated by PP1-
driven dephosphorylation of CaMKII, leading to changes in
CaMKII position within the NMDAR complex (Aow et al., 2015).

This may allow CaMKII to act on a novel site of the GluA1 sub-
unit (Ser-567) that undergoes phosphorylation during LTD
(Coultrap et al., 2014). Consistent with this model, CaMKII
phosphorylation of GluA1-Ser-567 did not require Ca 2� or cal-
modulin (Coultrap et al., 2014), and may result in increased
AMPAR endocytosis and decreased synaptic transmission (Lüscher
et al., 1999; Lin et al., 2000; Kim et al., 2001; Shi et al., 2001).

Metabotropic NMDAR signaling in structural plasticity
Independent support for a non-ionotropic NMDAR signaling
mechanism in driving synaptic depression came from the identi-
fication that such a mechanism also can regulate the structural
plasticity of dendritic spines. Synaptic function and dendritic
spine size are closely coupled (Matsuzaki et al., 2001), and the
induction of synaptic depression has been shown to be tightly
correlated with decreased spine size (Okamoto et al., 2004; Zhou
et al., 2004; Hayama et al., 2013; Oh et al., 2013). Notably, a recent
report demonstrated that input-specific NMDAR-dependent
shrinkage of individual dendritic spines in response to low-
frequency glutamate uncaging (Oh et al., 2013) persisted even in
the presence of the NMDAR glycine/D-serine binding site antag-
onist 7-CK (Stein et al., 2015), supporting a non-ionotropic
mechanism for spine shrinkage. Furthermore, block of ion flow
through the NMDAR by application of 7CK or MK-801 during
high-frequency uncaging, converted high-frequency uncaging-
induced spine enlargement into spine shrinkage (Stein et al.,
2015), consistent with the finding that high-frequency stimula-
tion in the presence of MK-801 induced LTD instead of LTP
(Nabavi et al., 2013). Importantly, the direct stimulation of indi-
vidual spiny synapses through glutamate uncaging bypassed the
requirement of presynaptic glutamate release and avoided effects
of the pharmacological inhibitors on preNMDARs. Uncaging-
induced spine shrinkage in the presence of 7-CK was indepen-
dent of Group I mGluR (Stein et al., 2015) and AMPAR
activation (I.S.S., unpublished observation). Inhibition of p38
MAPK signaling, which has been implicated in both NMDAR-
and mGluR-dependent LTD (Bolshakov et al., 2000; Zhu et al.,
2002; Huang et al., 2004; Nabavi et al., 2013) and has been re-
cently reported to be necessary for the cofilin-dependent reorga-
nization of the actin cytoskeleton during mGluR-dependent LTD
(Eales et al., 2014), blocked non-ionotropic NMDAR-mediated
spine shrinkage (Stein et al., 2015). Thus, p38 MAPK signaling is
essential for non-ionotropic NMDAR signaling in structural and
functional plasticity. These results clearly demonstrate that non-
ionotropic NMDAR signaling is sufficient to drive both func-
tional and structural synaptic depression.

Unconventional NMDAR signaling and disease
The dysregulation of NMDAR-dependent plasticity mechanisms
has been associated with neuropsychiatric and neurodegenera-
tive diseases (Lau and Zukin, 2007; Paoletti et al., 2013), and
recent findings implicated unconventional NMDAR signaling. In
Alzheimer’s disease, early synaptic dysfunction is associated with
increased levels of oligomeric amyloid-� (A�) protein, which causes
a rapid NMDAR-dependent synaptic depression and spine elimina-
tion in model systems (Hsieh et al., 2006; Shankar et al., 2007,
2008; Wei et al., 2010). Indeed, dendritic spine loss in the cerebral
cortex is one of the first structural changes that can be observed in
the early stages of Alzheimer’s disease, and the amount of spine
loss is correlated with cognitive decline (DeKosky and Scheff,
1990; Terry et al., 1991; Selkoe, 2002). Notably, this NMDAR-
dependent, A�-induced synaptic depression and spine elimina-
tion are also independent of ion flow through the NMDAR
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(Kessels et al., 2013; Tamburri et al., 2013; Birnbaum et al., 2015).
Although A�-induced spine elimination was blocked in the pres-
ence of the NMDAR glutamate binding site antagonist APV, it
was unaffected by the channel pore blockers MK-801 or meman-
tine. Interestingly, the conformation of the NMDAR cytoplasmic
domain was also affected by A�, in a similar manner as during
LTD induction (K.D., unpublished observation). Consistent
with the idea that LTD and A�-induced depression share com-
mon signaling mechanisms (Hsieh et al., 2006), p38 MAPK sig-
naling is also involved in A�-induced spine elimination, as
phosphorylation of p38 MAPK increased with A� treatment and
block of p38 activity prevented A�-induced spine elimination (Birn-
baum et al., 2015). Together, these findings strongly implicate
unconventional, ion-flow-independent NMDAR signaling in the
etiology of Alzheimer’s disease.

Abnormalities in NMDAR signaling, specifically a dysregula-
tion or hypofunction of NMDARs, have also been implicated in
schizophrenia (Coyle, 2006). Schizophrenia is a complex, heter-
ogeneous neuropsychiatric disorder with deficits in executive
and cognitive function. Neuropathological studies have reported
an increased dendritic spine loss in specific cortical regions, in-
cluding the hippocampus (Penzes et al., 2011; Glausier and Lewis,
2013; Konopaske et al., 2014). Notably, reduced levels of the syn-
aptic NMDAR coagonist D-serine and polymorphisms of genes
involved in the regulation of endogenous D-serine levels have
been found in schizophrenic patients (Hashimoto et al., 2005;
Goltsov et al., 2006; Bendikov et al., 2007; Morita et al., 2007; Balu
et al., 2013). Furthermore, increased levels of kynurenic acid, an
endogenously occurring NMDAR glycine/D-serine binding site
antagonist, also have been reported in patients with schizophre-
nia (Plitman et al., 2017). The consequences of reduced availabil-
ity or access of the requisite NMDAR coagonist glycine/D-serine
are expected to be similar to those found following the experi-
mental application of 7-CK (a derivative of kynurenic acid).
Reduced Ca 2�-influx through the NMDAR will favor non-
ionotropic NMDAR signaling, leading to synaptic depression
and spine shrinkage, which could contribute to the observed de-
crease of dendritic spine number and cognitive deficits in patients
with schizophrenia.

Recent work has also revealed a role for metabotropic NMDAR
signaling in excitotoxicity and ischemic stroke (Weilinger et al.,
2016). In the classical view, ligand-gated Ca2�-permeable NMDARs
cause excitotoxicity and neuronal death (Paoletti et al., 2013). How-
ever, metabotropic NMDAR signaling together with sarcoma (Src)
kinase and pannexin-1 (Panx1) channels have been directly linked to
membrane blebbing, mitochondrial dysfunction, and cell death as
well as neurological deficits after stroke (Weilinger et al., 2016). This
exciting finding may provide novel candidate targets for alleviating
ischemic brain damage.

We have provided examples of unorthodox NMDAR signal-
ing in three major neurological pathologies: Alzheimer’s, schizo-
phrenia, and stroke. Further investigation of unconventional
NMDAR signaling will lead to a deeper understanding of how
NMDAR dysregulation contributes to neuropsychiatric and neu-
rodegenerative disease.

Concluding Remarks and Future Directions
In conclusion, we have highlighted here several unorthodox
NMDAR signaling modes, metabotropic as well as presynaptic,
in the regulation of synaptic structural and functional plasticity
that reach beyond the well-described conventional postsynaptic
ionotropic roles for NMDAR signaling (Traynelis et al., 2010;
Paoletti et al., 2013; Maheux et al., 2015; Iacobucci and Popescu,

2017). Prior studies concluding ionotropic NMDAR function,
often based on postsynaptic Ca 2� chelation, may need to be
revisited in light of new findings supporting metabotropic
NMDAR functions (Nabavi et al., 2013; Aow et al., 2015; Dore et
al., 2015; Stein et al., 2015; Latif-Hernandez et al., 2016). Further-
more, some findings attributed to postsynaptic NMDAR block-
ade might be due to preNMDARs (Duguid and Sjöström, 2006;
Banerjee et al., 2016), and vice-versa (Carter and Jahr, 2016). In
the future, it will be important to elucidate the molecular basis of
NMDAR plasticity, and the downstream signaling cascades of
preNMDARs and of metabotropic NMDAR signaling, as these
may provide novel drug targets for more specific treatments of
several devastating neurological disorders. It will also be impor-
tant to further elucidate the functional roles of different NMDAR
subunits, in particular the GluN3 subunit, because it confers re-
sistance to Mg 2� blockade (Pérez-Otaño et al., 2016). No matter
what the findings are, it is amply clear that a thorough under-
standing of NMDAR functioning requires increased attention to,
and further study of, unconventional modes of NMDAR action.
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